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Abstract. There is a well-known gap between second-preimage resis-
tance and preimage resistance for length-preserving hash functions. This
paper introduces a simple concept that fills this gap. One consequence of
this concept is that tight reductions can remove interactivity for multi-
target length-preserving preimage problems, such as the problems that
appear in analyzing hash-based signature systems. Previous reduction
techniques applied to only a negligible fraction of all length-preserving
hash functions, presumably excluding all off-the-shelf hash functions.

Keywords: cryptographic hash functions, preimage resistance, second-
preimage resistance, provable security, tight reductions, multi-target at-
tacks, hash-based signatures

1 Introduction

Define S : {0, 1}256 → {0, 1}256 as the SHA-256 hash function restricted to
256-bit inputs. Does second-preimage resistance for S imply preimage resistance
for S?

The classic Rogaway–Shrimpton paper “Cryptographic hash-function basics”
[15] shows that second-preimage resistance tightly implies preimage resistance
for an efficient hash function that maps fixed-length inputs to much shorter
outputs. The idea of the proof is that one can find a second preimage of a
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random input x with high probability by finding a preimage of the hash of x.
But this probability depends on the difference in lengths, and the proof breaks
down for length-preserving hash functions such as S.

The same paper also argues that second-preimage resistance cannot imply
preimage resistance for length-preserving hash functions. The argument, in a
nutshell, is that the identity function from {0, 1}256 to {0, 1}256 provides un-
conditional second-preimage resistance—second preimages do not exist—even
though preimages are trivial to find.

A counterargument is that this identity-function example says nothing about
real hash functions such as S. The identity-function example shows that there
cannot be a theorem that for all length-preserving hash functions proves preim-
age resistance from second-preimage resistance; but this is only the beginning of
the analysis. The example does not rule out the possibility that second-preimage
resistance, together with a mild additional assumption, implies preimage resis-
tance.

1.1 Contributions of this paper

We show that preimage resistance (PRE) follows tightly from the conjunction
of second-preimage resistance (SPR) and decisional second-preimage resistance
(DSPR). Decisional second-preimage resistance is a simple concept that
we have not found in the literature: it means that the attacker has negligible
advantage in deciding, given a random input x, whether x has a second preimage.

There is a subtlety in the definition of advantage here. For almost all length-
preserving hash functions, always guessing that x does have a second preimage
succeeds with probability approximately 63%. (See Section 3.) We define DSPR
advantage as an increase in probability compared to this trivial attack.

We provide three forms of evidence that DSPR is a reasonable assumption.
First, we show that DSPR holds for random functions even against quantum ad-
versaries that get quantum access to a function. Specifically, a q-query quantum
adversary has DSPR advantage at most 32q2/2n against an oracle for a uniform
random hash function from {0, 1}n to {0, 1}n. In [9] the same bound was shown
for PRE and SPR together with matching attacks demonstrating the bounds are
tight. This means that DSPR is at least as hard to break as PRE or SPR for
uniform random hash functions from {0, 1}n to {0, 1}n.

Second, the subtlety mentioned above means that DSPR, when generalized in
the most natural way to m-bit-to-n-bit hash functions, becomes unconditionally
provable when m is much larger than n. This gives a new proof of PRE from
SPR, factoring the original proof by Rogaway and Shrimpton into two steps:
first, prove DSPR when m is much larger than n; second, prove PRE from SPR
and DSPR.

Third, we have considered ways to attack DSPR for real hash functions such
as S, and have found nothing better than taking the time necessary to reliably
compute preimages. A curious feature of DSPR is that there is no obvious way
for a fast attack to achieve any advantage. A fast attack that occasionally finds
a preimage of H(x) will occasionally find a second preimage, but the baseline is
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already guessing that x has a second preimage; to do better than the baseline, one
needs to have enough evidence to be reasonably confident that x does not have a
second preimage. Formally, there exists a fast attack (in the non-uniform model)
that achieves a nonzero advantage (by returning 0 if the input matches some
no-second-preimage values built into the attack, and returning 1 otherwise), but
we do not have a fast way to recognize this attack.

1.2 Multi-target attacks

We see DSPR as showing how little needs to be assumed beyond SPR to obtain
PRE. However, skeptics might object that SPR and DSPR are still two separate
assumptions for cryptanalysts to study, that DSPR has received less study than
PRE, and that DSPR could be easier to break than PRE, even assuming SPR.
Why is assuming both SPR and DSPR, and deducing PRE, better than assuming
both SPR and PRE, and ignoring DSPR? We give the following answer.

Consider the following simple interactive game T -openPRE. The attacker is
given T targets H(1, x1), . . . ,H(T, xT ), where x1, . . . , xT are chosen indepen-
dently and uniformly at random. The attacker is also given access to an “open-
ing” oracle that, given i, returns xi. The attacker’s goal is to output (i, x′) where
H(i, x′) = H(i, xi) and i was not an oracle query. Games of this type appear in,
e.g., analyzing the security of hash-based signatures: legitimate signatures reveal
preimages of some hash outputs, and attackers try to find preimages of other
hash outputs.

One can try to use an attack against this game to break PRE as follows. Take
the PRE challenge, insert it at a random position into a list of T − 1 randomly
generated targets, and run the attack. Abort if there is an oracle query for the
position of the PRE challenge; there is no difficulty answering oracle queries
for other positions. The problem here is that a successful attack could query
as many as T − 1 out of T positions, and then the PRE attack succeeds with
probability only 1/T . What happens if T is large and one wants a tight proof?

If T -openPRE were modified to use targets H(xi) instead of H(i, xi) then
the attacker could try many guesses for x′, checking each H(x′) against all of
the targets. This generic attack is T times more likely to succeed than a generic
attack against PRE using the same number of guesses. However, the inclusion
of the prefix i (as in [9]) seems to force attackers to focus on single targets, and
opens up the possibility of a security proof that does not quantitatively degrade
with T .

One might try to tightly prove security of T -openPRE assuming security
of a simpler non-interactive game T -PRE in which the opening oracle is re-
moved: the attacker’s goal is simply to find some (i, x′) with H(i, x′) = H(i, xi),
given T targets H(1, x1), . . . ,H(T, xT ). This game T -PRE is simple enough that
cryptanalysts can reasonably be asked to study it (and have already studied it
without the i prefixes). However, the difficulty of answering the oracle queries
in T -openPRE seems to be an insurmountable obstacle to a proof of this type.

We show that the security of T -openPRE follows tightly from the conjunction
of two simple non-interactive assumptions, T -SPR and T -DSPR. This shows an



4 Daniel J. Bernstein and Andreas Hülsing

important advantage of introducing DSPR, allowing a reduction to remove the
interactivity of T -openPRE.

The advantage of SPR (and T -SPR) over PRE (and T -PRE) in answering
oracle queries inside reductions was already pointed out in [9]. The remaining
issue, the reason that merely assuming T -SPR is not enough, is that there might
be an attack breaking PRE (and T -PRE and T -openPRE) only for hash outputs
that have unique preimages. Such an attack would never break SPR.

To address this issue, [9] assumes that each hash-function output has at
least two preimages. This is a restrictive assumption: it is not satisfied by most
length-preserving functions, and presumably it is not satisfied by (e.g.) SHA-256
for 256-bit inputs. Building a hash function that can be reasonably conjectured
to satisfy the assumption is not hard—for example, apply SHA-256, truncate
the result to 248 bits (see Theorem 11), and apply SHA-256 again to obtain a
random-looking 256-bit string—but the intermediate truncation here produces
a noticeably smaller security level, and having to do twice as many SHA-256
computations is not attractive.

We instead observe that an attack of this type must somehow be able to
recognize hash outputs with unique preimages, and, consequently, must be able
to recognize hash inputs without second preimages, breaking DSPR. Instead of
assuming that there are always two preimages, we make the weaker assumption
that breaking DSPR is difficult. This assumption is reasonable for a much wider
range of hash functions.

1.3 The strength of SPR

There are some hash functions H where SPR is easy to break, or at least seems
easier to break than PRE (and T -PRE and T -openPRE):

– Define H(x) = 4x mod p, where p is prime, 4 has order (p − 1)/2 modulo
p, and x is in the range {0, 1, . . . , p − 2}. Breaking PRE is then solving
the discrete-logarithm problem, which seems difficult when p is large, but
breaking SPR is a simple matter of adding (p−1)/2 modulo p−1. (Quantum
computers break PRE in this example, but are not known to break PRE for
analogous examples based on isogenies.)

– Define H : {0, 1}2
kn → {0, 1}n by Merkle–Damgård iteration of an n-bit

compression function. Then, under reasonable assumptions, breaking SPR
for H takes only 2n−k simple operations. See [10]. See also [1] for attacks
covering somewhat more general iterated hash functions.

In the first example, proving PRE from SPR+DSPR is useless. In the second
example, proving PRE from SPR+DSPR is unsatisfactory, since it seems to
underestimate the quantitative security of PRE. This type of underestimate
raises the same difficulties as a loose proof: users have to choose larger and
slower parameters for the proof to guarantee the desired level of security, or
have to take the risk of the “nightmare scenario” that there is a faster attack.
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Fortunately, modern “wide-pipe” hash functions and “sponge” hash functions
such as SHA-3 are designed to eliminate the internal collisions exploited in at-
tacks such as [10]. Furthermore, input lengths are restricted in applications to
hash-based signatures, and this restriction seems to strengthen SPR even for
older hash functions such as SHA-256. The bottom line is that one can easily
select hash functions for which SPR and T -SPR and T -DSPR seem to be as
difficult to break as PRE, such as SHA3-256 and SHA-256 restricted to 256-bit
inputs.

1.4 Organization of the paper

In Section 2 we define DSPR and show how it can be used to relate SPR and
PRE. A consequence of our definition is that a function does not provide DSPR
if noticeably more than half the domain elements have no colliding value. In
Section 3 we show that the overwhelming majority of length-preserving hash
functions have the property that more than half of the domain elements have
a colliding value. In Section 4 we extend the analysis to keyed hash functions.
We show in Section 5 that DSPR is hard in the QROM. We define T -DSPR in
Section 6. We show in Section 7 how to use T -DSPR to eliminate the interactivity
of T -openPRE. We close our work with a discussion of the implications for hash-
based signatures in Section 8.

2 Decisional second-preimage resistance

In this section we give a formal definition of decisional second-preimage resistance
(DSPR) for cryptographic hash functions. We start by defining some notation
and recalling some standard notions for completeness before we move on to the
actual definition.

2.1 Notation

Fix nonempty finite sets X and Y of finite-length bit strings. In this paper, a
hash function means a function from X to Y.

As shorthands we write M = |X |; N = |Y|; m = log2M ; and n = log2N .
The compressing case is that M > N , i.e., |X | > |Y|; the expanding case is that
M < N , i.e., |X | < |Y|; the length-preserving case is thatM = N , i.e., |X | = |Y|.

We focus on bit strings so that it is clear what it means for elements of X or
Y to be algorithm inputs or outputs. Inputs and outputs are required to be bit
strings in the most common formal definitions of algorithms. These bit strings
are often encodings of more abstract objects, and one could generalize all the
definitions in this paper to work with more abstract concepts of algorithms.

2.2 Definitions

We now give several definitions of security concepts for a hash function H. We
have not found decisional second-preimage resistance (DSPR) in the literature.
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We also define a second-preimage-exists predicate (SPexists) and the second-
preimage-exists probability (SPprob) as tools to help understand DSPR. The
definitions of preimage resistance (PRE) and second-preimage resistance (SPR)
are standard but we repeat them here for completeness.

Definition 1 (PRE). The success probability of an algorithm A against the
preimage resistance of a hash function H is

SuccpreH (A) def
= Pr [x←R X ;x′ ← A(H(x)) : H(x) = H(x′)] .

Definition 2 (SPR). The success probability of an algorithm A against the
second-preimage resistance of a hash function H is

SuccsprH (A) def
= Pr [x←R X ;x′ ← A(x) : H(x) = H(x′) ∧ x 6= x′] .

Definition 3 (SPexists). The second-preimage-exists predicate SPexists(H) for
a hash function H is the function P : X → {0, 1} defined as follows:

P (x)
def
=

{
1 if |H−1(H(x))| ≥ 2

0 otherwise.

If P (x) = 0 then x has no second preimages under H: any x′ 6= x has
H(x′) 6= H(x). The only possible successes of an SPR attack are for inputs x
where P (x) = 1.

Definition 4 (SPprob). The second-preimage-exists probability SPprob(H) for
a hash function H is Pr [x←R X : P (x) = 1], where P = SPexists(H).

In other words, p = SPprob(H) is the maximum of SuccsprH (A) over all
algorithms A, without any limits on the cost of A. Later we will see that almost
all length-preserving hash functions H have p > 1/2. More precisely, p ≈ 1 −
e−1 ≈ 0.63. For comparison, p = 0 for an injective function H, such as the n-
bit-to-n-bit identity function; and p = 1 for a function where every output has
multiple preimages.

Definition 5 (DSPR). Let A be an algorithm that always outputs 0 or 1.
The advantage of A against the decisional second-preimage resistance of a hash
function H is

Advdspr
H (A) def

= max {0,Pr [x←R X ; b← A(x) : P (x) = b]− p}

where P = SPexists(H) and p = SPprob(H).

2.3 Examples of DSPR advantages

Here are some examples of computing DSPR advantages. As above, write P =
SPexists(H) and p = SPprob(H).
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If A(x) = 1 for all x, then Pr [x←R X ; b← A(x) : P (x) = b] = p by defini-
tion, so Advdspr

H (A) = 0.
If A(x) = 0 for all x, then Advdspr

H (A) = max {0, 1− 2p}. In particular,
Advdspr

H (A) = 0 if p ≥ 1/2, while Advdspr
H (A) = 1 for an injective function H.

More generally, say A(x) flips a biased coin and returns the result, where the
probability of 1 is c, independently of x. Then A(x) = P (x) with probability
cp+ (1− c)(1− p), which is between min {1− p, p} and max {1− p, p}, so again
Advdspr

H (A) = 0 if p ≥ 1/2.
As a more expensive example, say A(x) searches through all x′ ∈ X to see

whether x′ is a second preimage for x, and returns 1 if any second preimage is
found, otherwise 0. Then A(x) = P (x) with probability 1, so Advdspr

H (A) = 1−p.
This is the maximum possible DSPR advantage.

More generally, say A(x) runs a second-preimage attack B against H, and
returns 1 if B is successful (i.e., the output x′ from B satisfies x′ 6= x and H(x′) =
H(x)), otherwise 0. By definition A(x) = 1 with probability SuccsprH (B), and if
A(x) = 1 then also P (x) = 1, so A(x) = 1 = P (x) with probability SuccsprH (B).
Also P (x) = 0 with probability 1 − p and if P (x) = 0 also A(x) = 0 as there
simply does not exist any second-preimage for B to find. Hence, A(x) = 0 = P (x)
with probability 1−p. Overall A(x) = P (x) with probability 1−p+SuccsprH (B),
so

Advdspr
H (A) = max {0, 1− 2p+ SuccsprH (B)} .

This advantage is 0 whenever 0 ≤ SuccsprH (B) ≤ 2p− 1: even if B breaks second-
preimage resistance with probability as high as 2p − 1 (which is approximately
26% for almost all length-preserving H), A breaks DSPR with advantage 0. If
B breaks second-preimage resistance with probability p, the maximum possible,
then Advdspr

H (A) = 1− p, the maximum possible advantage.
As a final example, say x1 ∈ X has no second preimage, and say A(x)

returns 0 if x = x1, otherwise 1. Then A(x) = P (x) with probability p+ 1/2m,
so Advdspr

H (A) = 1/2m. This example shows that an efficient algorithm can
achieve a (very small) nonzero DSPR advantage. We can efficiently generate an
algorithm A of this type with probability 1−p by choosing x1 ∈ X at random (in
the normal case that X = {0, 1}m), but for typical hash functions H we do not
have an efficient way to recognize whether A is in fact of this type, i.e., whether
x1 in fact has no second preimage: recognizing this is exactly the problem of
breaking DSPR!

2.4 Alternatives to the DSPR definition

Many security definitions require the attacker to distinguish two possibilities,
each of which naturally occurs with probability 1/2. Any sort of blind guess
is correct with probability 1/2. Define a as the probability of a correct output
minus 1/2; a value of a noticeably larger than 0 means that the algorithm is
noticeably more likely than a blind guess to be correct.

If an algorithm is noticeably less likely than a blind guess to be correct then
one can do better by (1) replacing it with a blind guess or (2) inverting its output.
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The first option replaces a with max{0, a}; the second option replaces a with
|a|; both options have the virtue of eliminating negative values of a. Advantage
is most commonly defined as |a|, or alternatively as 2|a|, the distance between
the probability of a correct output and the probability of an incorrect output.
These formulas are simpler than max{0, a}.

For DSPR, the two possibilities are not naturally balanced. A second preim-
age exists with probability p, and almost all length-preserving (or compressing)
hash functions have p > 1/2. Guessing 1 is correct with probability p; guessing 0
is correct with probability 1−p; random guesses can trivially achieve any desired
intermediate probability. What is interesting—and what is naturally considered
in our proofs—is an algorithm A that guesses correctly with probability larger
than p. We thus define the advantage as max{0,Succ(A)− p}, where Succ(A) is
the probability of A generating a correct output.

An algorithm A that guesses correctly with probability smaller than 1− p is
also useful. We could define advantage as max{0,Succ(A)−p, (1−Succ(A))−p}
to take this into account, rather than leaving it to the attack developer to invert
the output. However, this formula is more complicated thanmax{0,Succ(A)−p}.

If p < 1/2 then, with our definitions, guessing 0 has advantage 1 − 2p > 0.
In particular, if p = 0 then guessing 0 has advantage 1: our definitions state
that injective functions are trivially vulnerable to DSPR attacks. It might seem
intuitive to define DSPR advantage as beating the best blind guess, i.e., as
probability minus max{p, 1−p} rather than probability minus p. This, however,
would break the proof that SPR ∧ DSPR implies PRE: the identity function
would have both SPR and DSPR but not PRE. We could add an assumption
that p ≥ 1/2, but the approach we have taken is simpler.

2.5 DSPR plus SPR implies PRE

We now present the main application of DSPR in the simplest case: We show
that a second-preimage-resistant and decisional-second-preimage-resistant hash
function is preimage resistant.

We first define the two reductions we use, SPfromP and DSPfromP, and
then give a theorem statement analyzing success probabilities. The algorithm
SPfromP(H,A) is the standard algorithm that tries to break SPR using an algo-
rithm A that tries to break PRE. The algorithm DSPfromP(H,A) is a variant
that tries to break DSPR. Each algorithm uses one computation of H, one call to
A, and (for DSPfromP) one string comparison, so each algorithm has essentially
the same cost as A if H is efficient.

Definition 6 (SPfromP). Let H be a hash function. Let A be an algorithm.
Then SPfromP(H,A) is the algorithm that, given x ∈ X , outputs A(H(x)).

Definition 7 (DSPfromP). Let H be a hash function. Let A be an algo-
rithm. Then DSPfromP(H,A) is the algorithm that, given x ∈ X , outputs [x 6=
A(H(x))].
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This output is 0 if A(H(x)) returns the preimage x that was already known
for H(x), and 1 otherwise. Note that the 0 case provides some reason to believe
that there is only one preimage. If there are i > 1 preimages then x, which is
not known to A except via H(x), is information-theoretically hidden in a set of
size i, so A cannot return x with probability larger than 1/i.

Theorem 8 (DSPR ∧ SPR ⇒ PRE). Let H be a hash function. Let A be an
algorithm. Then

SuccpreH (A) ≤ Advdspr
H (B) + 3 · SuccsprH (C)

where B = DSPfromP(H,A) and C = SPfromP(H,A).

Proof. This is as a special case of Theorem 25 below, modulo a change of syntax.
The special case is that K in Theorem 25 is {()}, where () is the empty string.
The change of syntax views a keyed hash function with an empty key as an
unkeyed hash function.

3 The second-preimage-exists probability

This section mathematically analyzes SPprob(H), the probability that a uniform
random input to H has a second preimage. The DSPR advantage of any attacker
is information-theoretically bounded by 1− SPprob(H).

3.1 Simple cases

In retrospect, the heart of the Rogaway–Shrimpton SPR-PRE reduction [15,
Theorem 7] is the observation that SPprob(H) is very close to 1 for all highly
compressing hash functions H. See Theorem 9. We show that SPprob(H) is
actually equal to 1 for almost all hash functions H that compress more than a
few bits; see Theorem 11.

Theorem 9 (lower bound on SPprob in the compressing case). If H is
a hash function and M > N then SPprob(H) ≥ 1− (N − 1)/M .

The maximum possible DSPR advantage in this case is (N − 1)/M . For
example, if M > 1 and N = 1 then SPprob(H) = 1 and the DSPR advan-
tage is always 0. As another example, a 320-bit-to-256-bit hash function H
has SPprob(H) ≥ 1 − (2256 − 1)/2320, and the DSPR advantage is at most
(2256 − 1)/2320 < 1/264.

Proof. Define I as the set of elements of X that have no second preimages; i.e.,
the set of x ∈ X such that |H−1(H(x))| = 1.

The image set H(I) ⊆ Y has size |I|, so |I| ≤ |Y| = N < M = |X |. The
complement X −I is thus nonempty, so the image set H(X −I) is also nonempty.
This image set cannot overlap H(I): if H(x′) = H(x) with x′ ∈ X − I and x ∈ I
then x′, x are distinct elements of H−1(H(x)), but |H−1(H(x))| = 1 by definition
of I. Hence |I| ≤ N − 1.
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By definition SPprob(H) is the probability that |H−1(H(x))| ≥ 2 where x is
a uniform random element of X , i.e., the probability that x is not in I. This is
at least 1− (N − 1)/M .

Theorem 10 (average of SPprob). The average of SPprob(H) over all hash
functions H is 1− (1− 1/N)M−1.

For example, the average is 1 − (1 − 1/2256)2
256−1 ≈ 1 − 1/e ≈ 0.63212 if

M = 2256 and N = 2256; see also Theorem 12. The average converges rapidly
to 1 as N/M drops: for example, the average is approximately 1 − 2−369.33 if
M = 2256 and N = 2248, and is approximately 1 − 2−94548 if M = 2256 and
N = 2240, while the lower bounds from Theorem 9 are approximately 1 − 2−16

and approximately 1− 2−32 respectively.
The average converges to 0 as N/M increases. The average crosses below 1/2,

making DSPR trivially breakable for the average function, asN/M increases past
about 1/ log 2 ≈ 1.4427.

Proof. For each x ∈ X , there are exactly N(N − 1)M−1 hash functions H for
which x has no second preimages. Indeed, there are N choices of H(x), and then
for each i ∈ X − {x} there are N − 1 choices of H(i) ∈ Y − {H(x)}.

Hence there are exactly M(NM −N(N − 1)M−1) pairs (H, x) where x has a
second preimage under H; i.e., the total of SPprob(H) over allNM hash functions
H is NM −N(N − 1)M−1; i.e., the average of SPprob(H) over all hash functions
H is 1−N(N − 1)M−1/NM = 1− (1− 1/N)M−1.

Theorem 11 (how often SPprob is 1). If H is a uniform random hash
function then SPprob(H) = 1 with probability at least 1−M(1− 1/N)M−1.

This is content-free in the length-preserving case but becomes more useful
as N/M drops. For example, if M = 2256 and N = 2248, then the chance of
SPprob(H) < 1 is at most 2256(1 − 1/2248)2

256−1 ≈ 2−113.33. Hence almost
all 256-bit-to-248-bit hash functions have second preimages for all inputs, and
therefore have perfect DSPR (DSPR advantage 0) against all attacks.

Proof. Write q for the probability that SPprob(H) = 1. Then SPprob(H) ≤
1−1/M with probability 1−q. The point here is that SPprob(H) is a probability
over M inputs, and is thus a multiple of 1/M .

The average of SPprob(H) is at most q+(1−q)(1−1/M) = 1−(1−q)/M . By
Theorem 10, this average is exactly 1−(1−1/N)M−1. Hence 1−(1−1/N)M−1 ≤
1− (1− q)/M ; i.e., q ≥ 1−M(1− 1/N)M−1.

Theorem 12 (average of SPprob vs. 1 − 1/e in the length-preserving
case). If M = N > 1 then the average a of SPprob(H) over all hash functions
H has 1− (1/e)N/(N − 1) < a < 1− 1/e.

The big picture is that almost all length-preserving hash functions H have
SPprob(H) close to 1− 1/e. This theorem states part of the picture: the average
of SPprob(H) is extremely close to 1 − 1/e if N is large. Subsequent theorems
fill in the rest of the picture.
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Proof. The point is that (N/(N − 1))N−1 < e < (N/(N − 1))N for N ≥ 2. See,
e.g., [4]. In other words, e(N − 1)/N < (N/(N − 1))N−1 < e. Invert to see that
1/e < (1− 1/N)N−1 < (1/e)N/(N − 1). Finally, the average a of SPprob(H) is
1− (1− 1/N)N−1 by Theorem 10.

3.2 How SPprob varies

This subsection analyzes the distribution of SPprob(H) as H varies. Theorem 14
amounts to an algorithm that computes the probability of each possible value
of SPprob(H) in time polynomial in M + N . Theorem 16, used in Section 3.3,
gives a simple upper bound on each term in the probability.

Theorem 13. Let a, b be nonnegative integers. Define c(a, b) as the coefficient
of xb in the power series b!(ex − 1 − x)a/a!. Then a!c(a, b) is the number of
functions from {1, . . . , b} to {1, . . . , a} for which each of {1, . . . , a} has at least
two preimages.

This is a standard example of “generatingfunctionology”. See, e.g., [16, se-
quence A000478, “E.g.f.”] for a = 3 and [16, sequence A058844, “E.g.f.”] for
a = 4.

Note that c(a, b) = 0 for b < 2a, and that c(0, b) = 0 for b > 0.

Proof. Choose integers i1, . . . , ia ≥ 2 with i1 + · · · + ia = b, and consider any
function f built as follows. Let π be a permutation of {1, . . . , b}. Define f(π(1)) =
f(π(2)) = . . . = f(π(i1)) = 1; note that 1 has i1 ≥ 2 preimages. Define f(π(i1 +
1)) = f(π(i1 + 2)) = . . . = f(π(i1 + i2)) = 2; note that 2 has i2 ≥ 2 preimages.
Et cetera.

There are exactly b! choices of π, producing exactly b!/i1! · · · ia! choices of f .
This covers all functions f for which 1 has exactly i1 preimages, 2 has exactly
i2 preimages, etc.

The total number of functions being counted is thus the sum of b!/i1! · · · ia!
over all i1, . . . , ia ≥ 2 with i1 + · · ·+ ia = b.

For comparison, the power series ex − 1− x is
∑
i≥2 x

i/i!, so

(ex − 1− x)a =
∑

i1,...,ia≥2

xi1+···+ia/i1! · · · ia!.

The coefficient of xb is the sum of 1/i1! · · · ia! over all i1, . . . , ia ≥ 2 with i1 +
· · ·+ ia = b. By definition a!c(a, b)/b! is this coefficient, so a!c(a, b) is the sum of
b!/i1! · · · ia! over all i1, . . . , ia ≥ 2 with i1 + · · ·+ ia = b.

Theorem 14 (exact distribution of SPprob). There are exactly(
M

j

) ∑
j≤k≤N

c(k − j,M − j) N !

(N − k)!

hash functions H with SPprob(H) = 1− j/M .
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Fig. 1. Cumulative distribution of SPprob(H) for M = N = 1; M = N = 2; M = N =
4; M = N = 8; M = N = 16; M = N = 32; M = N = 64. The probabilities that
SPprob(H) ≤ 0.5 are, respectively, 1; 0.5; 0.65625; ≈0.417366; ≈0.233331; ≈0.100313;
and ≈0.023805. As N →∞ with M = N , the distribution converges to a vertical line
at 1− 1/e.

The summand is 0 if k > (M + j)/2, i.e., if M − j < 2(k − j), since then
c(k − j,M − j) = 0. The summand is also 0 if k = j and M > j, since then
c(0,M − j) = 0.

In particular, if j > N then SPprob(H) = 1 − j/M with probability 0; and
if j = N < M then SPprob(H) = 1 − j/M with probability 0. This calculation
shows that Theorem 14 includes Theorem 9.

The distribution of M − j here, for a uniform random hash function H, is
equal to the distribution of “K1” in [3, formula (2.21)], but the formulas are
different. The sum in [3, formula (2.21)] is an alternating sum with cancellation
between large terms. The sum in Theorem 14 is a sum of nonnegative terms;
this is important for our asymptotic analysis.

Figure 1 shows the cumulative distribution of SPprob(H) when M = N ∈
{1, 2, 4, 8, 16, 32, 64}. Each graph ranges from 0 through 1 horizontally, and from
0 through 1 vertically. At horizontal position p, the (maximum) vertical position
is the probability that SPprob(H) ≤ p. We computed these probabilities using
Theorem 14.

Proof. We count the hash functions that (1) have exactly k ≥ j outputs and (2)
have exactly j inputs with no second preimages.

Choose the j inputs. There are
(
M
j

)
ways to do this.

Choose a partition of the N outputs into

• j outputs that will be used (without second preimages) by the j inputs;
• k− j outputs that will be used (with second preimages) by the other M − j

inputs; and
• N − k outputs that will not be used.

There are N !/j!(k − j)!(N − k)! ways to do this.
Choose an injective function from the j inputs to the j outputs. There are

j! ways to do this.
Choose a function from the other M − j inputs to the other k− j outputs for

which each of these k − j outputs has at least two preimages. By Theorem 13,
there are (k − j)!c(k − j,M − j) ways to do this.

This produces a hash function that, as desired, has exactly k outputs and
has exactly j inputs with no second preimages. Each such function is produced
exactly once. Hence there are

(
M
j

)
c(k − j,M − j)N !/(N − k)! such functions.
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Finally, sum over k to see that there are(
M

j

) ∑
j≤k≤N

c(k − j,M − j) N !

(N − k)!

hash functions H that have exactly j inputs with no second preimages, i.e., hash
functions H that have SPprob(H) = 1− j/M .

Theorem 15. Let a, b be positive integers. Let ζ be a positive real number. As-
sume that b/a = ζ + ζ2/(eζ − 1− ζ). Then c(a, b) ≤ (eζ − 1− ζ)aζ−bb!/a!.

Our proof applies [5, Proposition VIII.7], which is an example of the “saddle-
point method” in analytic combinatorics. With more work one can use the saddle-
point method to improve bounds by a polynomial factor, but our main concern
here is exponential factors.

Proof. Define B(z) =
∑
i≥2 z

i−2/i! = 1/2+z/6+z2/24+· · · . Note that z2B(z) =

ez − 1− z, and that zB′(z) =
∑
i≥3(i− 2)zi−2/i! = (z− 2)B(z) + 1. Also define

A(z) = 1; R =∞; T =∞; N = b− 2a; n = a; and λ = b/a− 2.
Check the hypotheses of [5, Proposition VIII.7]: A and B are analytic func-

tions of the complex variable z, with all coefficients nonnegative; B(0) = 1/2 6= 0;
the coefficient of z in B is nonzero; the radius of convergence of B is∞; the radius
of convergence of A is also ∞; the limit of xB′(x)/B(x) as x→∞ is ∞; λ is a
positive real number; N = λn; and ζB′(ζ)/B(ζ) = ζ−2+1/B(ζ) = b/a−2 = λ.

Now [5, Proposition VIII.7] states that the coefficient of zN in A(z)B(z)n is
at most A(ζ)B(ζ)nζ−N ; i.e., the coefficient of zb−2a in ((ez − 1 − z)/z2)a is at
most B(ζ)aζ2a−b; i.e., the coefficient of zb in (ez−1−z)a is at most B(ζ)aζ2a−b.
Hence c(a, b) ≤ B(ζ)aζ2a−bb!/a! = (eζ − 1− ζ)aζ−bb!/a!.

Theorem 16 (exponential convergence of SPprob). Let j be an integer
with 0 < j < M . Let k be an integer with j < k < N . Define µ =M/N , α = j/N ,
and κ = k/N . Let ζ be a positive real number. Assume that (µ − α)/(κ − α) =
ζ + ζ2/(eζ − 1− ζ). Then(

M

j

)
c(k − j,M − j) N !

(N − k)!
≤ M !N !eNτN

NN

where τ = (eζ − 1− ζ)κ−α/ζµ−ααα(κ− α)κ−α(1− κ)1−κ.

The proof combines Theorem 15 with the weak Stirling bound N ! ≥ (N/e)N .
See [14] for a proof that (N/e)N

√
2πNe1/(12N+1) ≤ N ! ≤ (N/e)N

√
2πNe1/12N .

Proof. Define a = k − j and b =M − j. Then a and b are positive integers, and
b/a = (µ− α)/(κ− α) = ζ + ζ2/(eζ − 1− ζ), so

c(k − j,M − j) = c(a, b) ≤ (eζ − 1− ζ)ab!
ζba!
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by Theorem 15, so(
M

j

)
c(k − j,M − j) N !

(N − k)!
≤ M !N !(eζ − 1− ζ)a

j!ζba!(N − k)!

≤ M !N !(eζ − 1− ζ)a

(j/e)jζb(a/e)a((N − k)/e)N−k

by the weak Stirling bound. Now substitute j = αN , k = κN , a = (κ − α)N ,
and b = (µ− α)N :(

M

j

)
c(k − j,M − j) N !

(N − k)!

≤ M !N !(eζ − 1− ζ)(κ−α)N

(αN/e)αNζ(µ−α)N ((κ− α)N/e)(κ−α)N ((N − κN)/e)N−κN

=
M !N !(eζ − 1− ζ)(κ−α)N

(N/e)NααNζ(µ−α)N (κ− α)(κ−α)N (1− κ)N−κN
=
M !N !τN

(N/e)N

as claimed.

3.3 Maximization

This subsection formalizes and proves our claim that SPprob(H) is close to
1− 1/e for almost all length-preserving hash functions H: as N increases (with
M = N), the distributions plotted in Figure 1 converge to a vertical line.

The basic idea here is that τ in Theorem 16 is noticeably below e when
j/N is noticeably below or above 1/e. One can quickly see this by numerically
plotting τ as a function of α and ζ: note that any choice of α and ζ (along with
µ = 1) determines κ = α + (µ − α)/(ζ + ζ2/(eζ − 1 − ζ)) and thus determines
τ . The plot suggests that ζ = 1 maximizes τ for each α, and that moving α
towards 1/e from either side increases τ up to its maximum value e. One could
use interval arithmetic to show, e.g., that τ/e < 0.998 for j/N > 0.4, but the
required number of subintervals would rapidly grow as j/N approaches 1/e. Our
proof also handles some corner cases that are not visible in the plot.

Theorem 17. Let µ, α, κ, ζ be positive real numbers with α < µ; α < κ < 1; and
(µ−α)/(κ−α) = ζ+ζ2/(eζ−1−ζ). First, there is a unique positive real number
Z such that Z(eZ−1)/(eZ−Z) = (µ−α)/(1−α). Second, there is a unique real
number K such that α < K < 1 and (µ− α)/(K − α) = Z + Z2/(eZ − 1− Z).
Third,

(eζ − 1− ζ)κ−α

ζµ−ααα(κ− α)κ−α(1− κ)1−κ
≤ (eZ − 1− Z)K−α

Zµ−ααα(K − α)K−α(1−K)1−K
.

Fourth, if µ = 1 then

(eZ − 1− Z)K−α

Zµ−ααα(K − α)K−α(1−K)1−K
=

(e− 1)1−α

αα(1− α)1−α
.
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Proof. Define ϕ1(Z) = Z(eZ − 1)/(eZ − Z) for Z > 0. By Lemma 42, ϕ1(Z)
achieves each positive real number as a value exactly once.

In particular, there is a unique Z > 0 such that ϕ1(Z) = (µ − α)/(1 − α).
This is the first conclusion of the theorem. We return later to this particular
value of Z.

Define ϕ2(Z) = Z + Z2/(eZ − 1 − Z) = Z(eZ − 1)/(eZ − 1 − Z) for each
Z > 0. Note that ϕ1(Z) < ϕ2(Z) for all Z > 0, since eZ − Z > eZ − 1− Z > 0.
By Lemma 46, ϕ2(Z) achieves each real number >2 as a value exactly once.

Define ϕ3(Z) = α+ (µ−α)/ϕ2(Z) for each Z > 0. Then ϕ3(Z) > α, and ϕ3

is decreasing since ϕ2 is increasing.
In particular, again take the unique real number Z > 0 such that ϕ1(Z) =

(µ−α)/(1−α). Then ϕ2(Z) > (µ−α)/(1−α), so ϕ3(Z) < 1. There is a unique
real number K > α such that (µ− α)/(K − α) = Z + Z2/(eZ − 1− Z), namely
K = ϕ3(Z); and K < 1. This is the second conclusion of the theorem. We return
later to these particular values of Z and K.

The set of Z > 0 such that ϕ3(Z) < 1 has the form {Z : Z > Z1}, since ϕ3

is decreasing. Define

ϕ4(Z) = (ϕ3(Z)− α) log(eZ − 1− Z)− (µ− α) logZ − α logα

− (ϕ3(Z)− α) log(ϕ3(Z)− α)− (1− ϕ3(Z)) log(1− ϕ3(Z))

for each Z > Z1. Then

ϕ′4(Z) = (ϕ3(Z)− α)(eZ − 1)/(eZ − 1− Z) + ϕ′3(Z) log(e
Z − 1− Z)

− (µ− α)/Z
− ϕ′3(Z)− ϕ′3(Z) log(ϕ3(Z)− α) + ϕ′3(Z) + ϕ′3(Z) log(1− ϕ3(Z)).

The terms (ϕ3(Z)−α)(eZ − 1)/(eZ − 1−Z) and (µ−α)/Z cancel, by definition
of ϕ3. The terms −ϕ′3(Z) and ϕ′3(Z) also cancel. Hence

ϕ′4(Z) = ϕ′3(Z)(log(e
Z − 1− Z)− log(ϕ3(Z)− α) + log(1− ϕ3(Z))).

The derivative ϕ′3(Z) is always negative, so

ϕ′4(Z) = 0 ⇔
eZ − 1− Z = (ϕ3(Z)− α)/(1− ϕ3(Z)) ⇔

eZ − Z = (1− α)/(1− ϕ3(Z)) ⇔
1− ϕ3(Z) = (1− α)/(eZ − Z) ⇔

1− α− (µ− α)/ϕ2(Z) = (1− α)/(eZ − Z) ⇔
1− ((µ− α)/(1− α))/ϕ2(Z) = 1/(eZ − Z) ⇔

((µ− α)/(1− α))/ϕ2(Z) = (eZ − 1− Z)/(eZ − Z) ⇔
(µ− α)/(1− α) = ϕ1(Z).

To summarize, the derivative ϕ′4(Z) is 0 for exactly one Z > Z1, namely the Z
for which ϕ1(Z) = (µ−α)/(1−α). To see that this value of Z maximizes (rather
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than minimizes) ϕ4(Z), observe that any larger Z has ϕ1(Z) > (µ−α)/(1−α),
and trace the inequality backwards:

((µ− α)/(1− α))/ϕ2(Z) < (eZ − 1− Z)/(eZ − Z);
1− ((µ− α)/(1− α))/ϕ2(Z) > 1/(eZ − Z);

1− α− (µ− α)/ϕ2(Z) > (1− α)/(eZ − Z);
1− ϕ3(Z) > (1− α)/(eZ − Z);
eZ − 1− Z > (ϕ3(Z)− α)/(1− ϕ3(Z));

ϕ′4(Z)/ϕ
′
3(Z) > 0;

so ϕ′4(Z) < 0 since ϕ′3(Z) < 0. Similarly, any smaller Z has ϕ′4(Z) > 0.
By assumption (µ−α)/(κ−α) = ϕ2(ζ); i.e., κ = ϕ3(ζ). Also κ < 1 so ζ > Z1.

Hence

ϕ4(ζ) = (κ− α) log(eζ − 1− ζ)− (µ− α) log ζ
− α logα− (κ− α) log(κ− α)− (1− κ) log(1− κ),

and ϕ4(ζ) ≤ ϕ4(Z) for the unique Z where ϕ1(Z) = (µ−α)/(1−α). Exponentiate
to obtain the third conclusion of the theorem.

Finally, if µ = 1 then ϕ1(Z) = 1 = ϕ1(1), so Z = 1, so K = ϕ3(1) =
α + (1 − α)r where r = (e − 2)/(e − 1). Note that e − 2 = r/(1 − r) and
1/(1− r) = e− 1. Now

(eZ − 1− Z)K−α

Zµ−ααα(K − α)K−α(1−K)1−K

=
(e− 2)K−α

αα(K − α)K−α(1−K)1−K

=
(e− 2)(1−α)r

αα((1− α)r)(1−α)r(1− α− (1− α)r)1−α−(1−α)r

=
(r/(1− r))(1−α)r

αα(1− α)(1−α)rr(1−α)r(1− α)1−α−(1−α)r(1− r)1−α−(1−α)r

=
1

αα(1− α)1−α(1− r)1−α
=

(e− 1)1−α

αα(1− α)1−α
.

This is the fourth conclusion of the theorem.

Theorem 18. Let α, κ, ζ, A be positive real numbers. Assume that α < κ < 1;
that (1−α)/(κ−α) = ζ+ζ2/(eζ−1−ζ); and that 1/e ≤ A ≤ α or α ≤ A ≤ 1/e.
Then

(eζ − 1− ζ)κ−α

ζ1−ααα(κ− α)κ−α(1− κ)1−κ
≤ (e− 1)1−A

AA(1−A)1−A
.

Proof. The point is that

(eζ − 1− ζ)κ−α

ζ1−ααα(κ− α)κ−α(1− κ)1−κ
≤ (e− 1)1−α

αα(1− α)1−α
≤ (e− 1)1−A

AA(1−A)1−A
.
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The first inequality follows from the case µ = 1 in Theorem 17. The second
inequality follows from the increasing part of Lemma 47 if α ≤ A ≤ 1/e, and
from the decreasing part of Lemma 47 if 1/e ≤ A ≤ α.

Theorem 19. Assume that M = N . Let A be a real number with 0 < A < 1.
Let H be a uniform random hash function. If A > 1/e, define E as the event that
SPprob(H) ≤ 1−A. If A ≤ 1/e, define E as the event that SPprob(H) ≥ 1−A.
Then E occurs with probability at most (T/e)N2πN2(N + 1)e1/6N where

T = max{1 +
√
2, (e− 1)1−A/AA(1−A)1−A}.

Any A 6= 1/e has T/e < 1, and then the important factor in the probability
for large N is (T/e)N . For example, if A = 0.4 then T/e < 0.99780899, so
(T/e)N is below 1/22

247

for N = 2256. As another example, if A = 0.37 then
T/e < 0.99999034, so (T/e)N is below 1/22

239

for N = 2256.

Proof. By Theorem 14, the number of hash functions H with SPprob(H) =
1−j/N is

∑
j≤k≤N

(
N
j

)
c(k−j,N−j)N !/(N−k)!. If A > 1/e then our goal is to

compute
∑
dANe≤j≤N

∑
j≤k≤N

(
N
j

)
c(k − j,N − j)N !/(N − k)!. If A ≤ 1/e then

our goal is to compute
∑

0≤j≤bANc
∑
j≤k≤N

(
N
j

)
c(k− j,N − j)N !/(N − k)!. We

then divide by NN , the total number of hash functions, to obtain the probability
of E.

Our strategy is to show that each term
(
N
j

)
c(k − j,N − j)N !/(N − k)! is

at most N !2eNTN/NN . There are at most N(N + 1) pairs (j, k), so the to-
tal is at most N !2eNTNN(N + 1)/NN , and the probability of E is at most
(N !/NN )2eNTNN(N + 1). This is at most (T/e)N2πN2(N + 1)e1/6N since
N ! ≤ (N/e)N

√
2πNe1/12N .

The rest of the proof splits into various possibilities for (j, k).
If 2(k − j) > N − j then c(k − j,N − j) = 0. Assume from now on that

2(k − j) ≤ N − j.
If k = N then 2(N − j) ≤ N − j so j = N . The term is then c(0, 0)N ! =

N ! ≤ N !2eN/NN ≤ N !2eNTN/NN as claimed; here we are using the weak
Stirling bound N ! ≥ (N/e)N , and the fact that T ≥ 1 +

√
2 ≥ 1. Assume from

now on that k < N .
If j = k then c(k − j,N − j) = c(0, N − j) = 0. Assume from now on that

j < k < N .
If 2(k − j) = N − j and j = 0 then the term is c(k,N)N !/(N − k)! =

N !2/2N/2(N/2)!2, since c(b, 2b) = (2b)!/b!2b. By the weak Stirling bound, this is
at most N !2/2N/2(N/2e)N = N !2eN2N/2/NN ≤ N !2eNTN/NN since 21/2 ≤ T .
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If 2(k − j) = N − j and j > 0 then 2k = N + j > N so k > N/2. Now(
N

j

)
c(k − j,N − j) N !

(N − k)!
=
N !2c(k − j,N − j)
j!(N − j)!(N − k)!

=
N !2(N − j)!

j!(N − j)!(N − k)!2k−j(k − j)!

=
N !2

(2k −N)!(N − k)!22N−k
.

This is at most N !2/((2k−N)/e)2k−N ((N−k)/e)2(N−k)2N−k = N !2eNβN/NN ,
where α = k/N and β = 1/(2α − 1)2α−1(1 − α)2(1−α)21−α. By Lemma 48,
β ≤ 1 +

√
2 ≤ T , so this term is at most N !2eNTN/NN .

Assume from now on that 2(k− j) < N − j. Write µ =M/N = 1, α = j/N ,
and κ = k/N .

If j = 0 then the term is c(k,N)N !/(N − k)!. Now 2k < N , so 1/κ > 2,
so there is a positive real number ζ with ζ + ζ2/(eζ − 1 − ζ) = 1/κ. Now
c(k,N) ≤ (eζ − 1− ζ)kN !/ζNk! by Theorem 15. The term is at most N !2(eζ −
1−ζ)k/ζNk!(N−k)! ≤ N !2eN (eζ−1−ζ)k/ζNkk(N−k)N−k = N !2eNγN/NN by
the weak Stirling bound, where γ = (eζ − 1− ζ)κ/ζκκ(1−κ)1−κ. By Lemma 50,
γ ≤ e− 1 ≤ T , so the term is at most N !2eNTN/NN .

Assume from now on that j > 0. Then 0 < j < k < N , so 0 < α < κ < 1.
Also 2(κ−α) < 1−α, so there is a positive real number ζ with ζ+ζ2/(eζ−1−ζ) =
(1−α)/(κ−α). By Theorem 16,

(
N
j

)
c(k−j,N−j)N !/(N−k)! ≤ N !2eNτN/NN

where τ = (eζ − 1 − ζ)κ−α/ζµ−ααα(κ − α)κ−α(1 − κ)1−κ. By Theorem 18,
τ ≤ (e−1)1−A/AA(1−A)1−A ≤ T . Each term is thus bounded by N !2eNTN/NN

as claimed.

4 DSPR for keyed hash functions

In this section we lift the discussion to the setting of keyed hash functions. We
model keyed hash functions as functions H : K × X → Y that take a dedicated
key as additional input argument. One might also view a keyed hash function as
a family of hash functions where elements of the family H are obtained by fixing
the first input argument which we call the function key. We write Hk

def
= H(k, ·)

for the function that is obtained from H by fixing the first input as k ∈ K.
We assume that K, like X and Y, is a nonempty finite set of finite-length

bit strings. We define the compressing, expanding, and length-preserving cases
as the cases |X | > |Y|, |X | < |Y|, and |X | = |Y| respectively, ignoring the size
of K.

We recall the definitions of preimage and second-preimage resistance for
keyed hash functions for completeness:

Definition 20 (PRE for keyed hash functions). The success probability of
adversary A against the preimage resistance of a keyed hash function H is

SuccpreH (A) def
= Pr [x←R X ; k ←R K;x′ ← A(Hk(x), k) : Hk(x) = Hk(x

′)] .
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Definition 21 (SPR for keyed hash functions). The success probability of
adversary A against the second-preimage resistance of a keyed hash function H
is

SuccsprH (A) def
= Pr [x←R X ; k ←R K;x′ ← A(x, k) : Hk(x) = Hk(x

′) ∧ x 6= x′] .

Our definition of DSPR for a keyed hash function H relies on the second-
preimage-exists predicate SPexists and the second-preimage-exists probability
SPprob for the functions Hk. If H is chosen uniformly at random then, for large
N and any reasonable size of K, it is very likely that all of the functions Hk

have SPprob(Hk) close to 1− 1/e; see Theorem 19.

Definition 22 (DSPR for keyed hash functions). Let A be an algorithm
that always outputs 0 or 1. The advantage of A against the decisional second-
preimage resistance of a keyed hash function H is

Advdspr
H (A) def

= max {0,Pr [x←R X , k ←R K, b← A(x, k) : Pk(x) = b]− p}

where Pk = SPexists(Hk) and p is the average of SPprob(Hk) over all k.

As an example, consider the keyed hash function H with X = Y = {0, 1}256,
K = {0, 1}, H0(x) = x, and H1(x) = (x1, x2, . . . , x255, 0) where the xi denote
the bits of x. Then Pk(x) = k, SPprob(Hk) = k, and p = 1/2. A trivial adver-
sary that outputs k has success probability 1 and thus DSPR advantage 1/2,
the maximum possible DSPR advantage: this function does not have decisional
second-preimage resistance.

It might seem natural to define SPprob(H) as the average mentioned in the
theorem. However, we will see later in the multi-target context that p is naturally
replaced by a more complicated quantity influenced by the algorithm.

4.1 DSPR plus SPR implies PRE

Before we show that DSPR is hard in the QROM (see Section 5), we give
a generalization of Theorem 8 for keyed hash functions. This theorem states
that second-preimage and decisional second-preimage resistance together imply
preimage resistance.

As in Theorem 8, we first define the two reductions we use, and then give
a theorem statement analyzing success probabilities. The special case that K =
{()}, where () means the empty string, is the same as Theorem 8, modulo syn-
tactic replacements such as replacing the pair ((), x) with x.

Definition 23 (SPfromP for keyed hash functions). Let H be a keyed hash
function. Let A be an algorithm. Then SPfromP(H,A) is the algorithm that,
given (k, x) ∈ K × X , outputs A(Hk(x), k).

Definition 24 (DSPfromP for keyed hash functions). Let H be a keyed
hash function. Let A be an algorithm. Then DSPfromP(H,A) is the algorithm
that, given (k, x) ∈ K × X , outputs [x 6= A(Hk(x), k)].
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Theorem 25 (DSPR ∧ SPR ⇒ PRE for keyed hash functions). Let H
be a keyed hash function. Let A be an algorithm. Then

SuccpreH (A) ≤ Advdspr
H (B) + 3 · SuccsprH (C)

where B = DSPfromP(H,A) and C = SPfromP(H,A).

Proof. To analyze the success probabilities, we split the universe of possible
events into mutually exclusive events across two dimensions: the number of
preimages of Hk(x), and whether A succeeds or fails in finding a preimage.
Specifically, define

Si
def
=
[∣∣H−1k (Hk(x))

∣∣ = i ∧Hk(A(Hk(x), k)) = Hk(x)
]

as the event that there are exactly i preimages and that A succeeds, and define

Fi
def
=
[∣∣H−1k (Hk(x))

∣∣ = i ∧Hk(A(Hk(x), k)) 6= Hk(x)
]

as the event that there are exactly i preimages and that A fails.
Note that there are only finitely many i for which the events Si and Fi can

occur, namely i ∈ {1, 2, . . . ,M}. All sums below are thus finite sums.
Define si and fi as the probabilities of Si and Fi respectively. The probability

space here includes the random choices of x and k, and any random choices
made inside A. The conditional probabilities mentioned below are conditional
probabilities given Si.

PRE success probability. By definition, SuccpreH (A) is the probability of
the event that Hk(x) = Hk(A(Hk(x), k)). This event is the union of Si, so
SuccpreH (A) =

∑
i si.

DSPR success probability. Define Pk = SPexists(Hk). For the i = 1 cases,
we have Pk(x) = 0 by definition of SPexists, so B is correct if and only if A
succeeds. For the i > 1 cases, we have Pk(x) = 1, so B is correct as long as A
does not output x. There are two disjoint ways for this to occur:

– A succeeds (case Si). Then A outputs x with conditional probability exactly
1
i , since x is information-theoretically hidden in a set of size i; so there is
conditional probability exactly i−1

i that A does not output x.
– A fails (case Fi). Then A does not output x.

Together we get

Pr[B(x, k) = Pk(x)] = s1 +
∑
i>1

i− 1

i
si +

∑
i>1

fi.

DSPR advantage. By definition Advdspr
H (B) = max{0,Pr[B(x, k) = Pk(x)]−p}

where p is the average of SPprob(Hk) over all k.



Decisional second-preimage resistance: When does SPR imply PRE? 21

By definition SPprob(Hk) is the probability over all choices of x that x has
a second preimage under Hk. Hence p is the same probability over all choices of
x and k; i.e., p =

∑
i>1 si +

∑
i>1 fi. Now subtract:

Advdspr
H (B) = max{0,Pr[B(x, k) = Pk(x)]− p}

≥ Pr[B(x, k) = Pk(x)]− p

= s1 +
∑
i>1

i− 1

i
si +

∑
i>1

fi −
∑
i>1

si −
∑
i>1

fi

= s1 −
∑
i>1

1

i
si.

SPR success probability. For the i = 1 cases, C never succeeds. For the i > 1
cases, C succeeds if and only if A succeeds and returns a value different from
x. This happens with conditional probability i−1

i for the same reason as above.
Hence

SuccsprH (C) =
∑
i>1

i− 1

i
si.

Combining the probabilities. We have

Advdspr
H (B) + 3 · SuccsprH (C) ≥ s1 −

∑
i>1

1

i
si + 3

∑
i>1

i− 1

i
si

= s1 +
∑
i>1

3i− 4

i
si

≥ s1 +
∑
i>1

si = SuccpreH (A)

as claimed.
The formal structure of the proof is concluded at this point, but we close

with some informal comments on how to interpret this proof. What happens is
the following. The cases where the plain reduction from SPR (C in the above)
fails are the S1 cases, i.e., A succeeds when there is only one preimage. If the
probability that they occur (s1) gets close to A’s total success probability, the
success probability of C goes towards zero. However, s1 translates almost directly
to the DSPR advantage of B. This is also intuitively what we want. For a brute-
force attack, one would expect s1 to be less than a 1− p fraction of A’s success
probability. If it is higher, this allows to distinguish. On the extreme: If s1 = s,
then B’s DSPR advantage is exactly A’s success probability and the reduction is
tight. If s1 = 0, B has no advantage over guessing, but C wins with at least half
the success probability ofA (in this case our generic 1/3 bound can be tightened).
As mentioned above, in general one would expect s1 to be a recognizable fraction
of s but clearly smaller than s. In these cases, both reductions succeed.
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5 DSPR is hard in the QROM

So far we have highlighted relations between DSPR and other hash function
properties. However, all this is useful only if DSPR is a hard problem for the
hash functions we are interested in. In the following we show that DSPR is hard
for a quantum adversary as long as the hash function behaves like a random
function. We do this presenting a lower bound on the quantum query complexity
for DSPR.

To make previous results reusable, we first need a result that relates the
success probability of an adversary in a biased distinguishing game like the DSPR
game to its success probability in the balanced version of the game.

Theorem 26. Let Bλ denote the Bernoulli distribution that assigns probability
λ to 1, Xb for b ∈ {0, 1} a non-empty set,

Succλ (A)
def
= Pr [b←R Bp;x←R Xb; g ← A(x) : g = b] ,

and

Advλ (A)
def
= max{0,Succλ (A)− λ}

Then for p ≥ 1/2 we have

Advp (A) ≤ p |Pr [x←R X1 : 1← A(x)]− Pr [x←R X0 : 1← A(x)]| .

More specifically

Succ 1
2
(A) ≥ 1

2p
Succp (A) , Adv 1

2
(A) ≥ 1

2p
Advp (A) ,

and

1

2
|Pr [x←R X1 : 1← A(x)]− Pr [x←R X0 : 1← A(x)]| ≥ Adv 1

2
(A)

Proof. Let s0 = Pr [b = 0 ∧ g = 0] = Pr [b = g | b = 0]Pr [b = 0] and s′0 = Pr [b = g | b = 0].
Define s1 = Pr [b = 1 ∧ g = 1] = Pr [b = g | b = 1]Pr [b = 1] and s′1 = Pr [b = g | b = 1] ,
accordingly. Then

1

2p
Succp (A) =

1

2p
((1− p)s′0 + ps′1)

=
1− p
p
· 1
2
s′0 +

1

2
s′1

≤ 1

2
s′0 +

1

2
s′1 = Succ 1

2
(A) ,
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where we used p ≥ 1/2. Now, for a zero advantage in the biased game the second
sub-claim is trivially true. For a non-zero advantage Advp (A) we get

Advp (A) = max{0,Succp (A)− p}
Advp (A) + p = Succp (A)

1

2p
(Advp (A) + p) ≤ Succ 1

2
(A)

1

2p
Advp (A) +

1

2
≤ Succ 1

2
(A)

1

2p
Advp (A) ≤ Succ 1

2
(A)− 1

2
= Adv 1

2
(A) .

The last sub-claim follows from

Adv 1
2
(A) = max

{
0,Succ 1

2
(A)− 1

2

}
≤
∣∣∣∣Succ 1

2
(A)− 1

2

∣∣∣∣
=

∣∣∣∣12 (Pr [x←R X1 : 1← A(x)] + Pr [x←R X0 : 0← A(x)])− 1

2

∣∣∣∣
=

∣∣∣∣12 (Pr [x←R X1 : 1← A(x)] + 1− Pr [x←R X0 : 1← A(x)])− 1

2

∣∣∣∣
=

1

2
|Pr [x←R X1 : 1← A(x)]− Pr [x←R X0 : 1← A(x)]|

The main statement follows from plugging the last two sub-claims together.

Our approach to show that DSPR is hard is giving a reduction from an
average-case distinguishing problem that was used in the full version of [9]. The
problem makes use of the following distribution Dλ over boolean functions.

Definition 27. Let F def
= {f : {0, 1}m → {0, 1}} be the collection of all boolean

functions on {0, 1}m. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions
Dλ on F such that f ←R Dλ satisfies

f : x 7→
{
1 with prob. λ,
0 with prob. 1− λ

for any x ∈ {0, 1}m.

In [9] the following bound on the distinguishing advantage of any q-query
quantum adversary was shown.

Theorem 28 [9]. Let Dλ be defined as in Definition 27, and A be any quantum
algorithm making at most q quantum queries to its oracle. Then

AdvD0,Dλ (A)
def
=

∣∣∣∣ Pr
f←D0

[Af (·) = 1]− Pr
f←Dλ

[Af (·) = 1]

∣∣∣∣ ≤ 8λq2 .



24 Daniel J. Bernstein and Andreas Hülsing

We still have to briefly discuss how DSPR is defined in the (quantum-
accessible) random oracle model. Instead of giving a description of the hash
function H as implicitly done in Definition 5, we provide A with an oracle O
that implements a function F : X → Y. As for most other notions that can be
defined for unkeyed hash functions, DSPR in the (Q)ROM becomes the same
for keyed and non-keyed hash functions. For keyed functions, instead of giving
a description of the keyed hash function H and a key k to the adversary A, we
provide A with an oracle that implements a function F : X → Y which now
models H for a fixed key k. Hence, the following result applies to both cases.
This can be seen as the key space might contain just a single key.

Now we got all tooling we need to show that DSPR is a hard problem.

Theorem 29. Let n ∈ N, N = 2n, H : K × {0, 1}n → {0, 1}n as defined above
be a random, length-preserving keyed hash function. Any quantum adversary A
that solves DSPR making q quantum queries to H can be used to construct a
quantum adversary B that makes 2q queries to its oracle and distinguishes D0

from D1/N with success probability

AdvD0,D1/N
(B) ≥ Advdspr

H (A).

Proof. By construction. The algorithm B generates an dspr instance as in Fig-
ure 2 and runs A on it. It outputs whatever A outputs. To answer an H query B
needs two f queries as it also has to uncompute the result of the f query after
it was used. The random function g can be efficiently simulated using 2q-wise
independent hash functions as discussed in [9].

Given: Oracle access to f : X → {0, 1}.

1. Sample x′ ← X and y′ ← Y independently and uniformly at random.
2. Let g : X → Y\{y′} be a random function. We construct H : X → Y as

follows: for any x ∈ X

x 7→


y′ if x = x′

y′ if x 6= x′ ∧ f(x) = 1
g(x) otherwise.

Output: dspr instance (H, x′). Namely an adversary is given x′ and oracle
access to H, and the goal is to decide if x′ has a second preimage under H.

Fig. 2. Reducing distinguishing D0 from D1/N to dspr.

Now, if f ←R D0, (H, x′) is a random dspr challenge from the set of all
dspr challenges with PH(x

′) = 0 (slightly abusing notation as we do not know
a key for our random function). Similarly, if f ←R D1/N , (H, x′) is a random
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dspr challenge from the set of all dspr challenges.

AdvD0,Dλ (B) =
∣∣∣∣ Pr
f←D0

[Bf (·) = 1]− Pr
f←Dλ

[Bf (·) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
f←D0

[AH(x′) = 1]− Pr
f←Dλ

[AH(x′) = 1]

∣∣∣∣
=
∣∣Pr[AH(x′) = 1 | PH(x

′) = 0]−
(
p · Pr[AH(x′) = 1 | PH(x

′) = 1]

+(1− p) · Pr[AH(x′) = 1 | PH(x
′) = 0]

)∣∣
= p ·

∣∣Pr[AH(x′) = 1 | PH(x
′) = 1]− Pr[AH(x′) = 1 | PH(x

′) = 0]
∣∣

≥ Advdspr
H (A),

where the last inequality follows from Theorem 26.

Theorem 30. Let n ∈ N, N = 2n, H : K×{0, 1}n → {0, 1}n as defined above be
a random, length-preserving keyed hash function. Any quantum adversary A that
makes no more than q quantum queries to its oracle can only solve the decisional
second-preimage problem with advantage

Advdspr
H (A) ≤ 32q2/N.

Proof. Use Theorem 29 to construct an adversary B that makes 2q queries and
that has advantage at least Advdspr

H (A) of distinguishing D0 from D1/N . This
advantage is at most 8(1/N)(2q)2 = 32q2/N by Theorem 28.

6 DSPR for multiple targets

Multi-target security considers an adversary that is given T independent targets
and is asked to solve a problem for one out of the T targets. This section defines
T -DSPR, a multi-target version of DSPR.

We draw attention to an unusual feature of this definition: the advantage of
an adversary A is defined as the improvement from p to q, where p and q are
two probabilities that can both be influenced by A. The second probability q is
A’s chance of correctly predicting whether the input selected by A has a second
preimage. The first probability p is the chance that the input selected by A does
have a second preimage.

This deviates from the usual view of advantage as how muchA improves upon
success probability compared to some trivial baseline attack. What we are doing,
for multi-target attacks, is asking how much A improves upon success probability
compared to the baseline attack against the same target that A selected. In most
of the contexts considered in the literature, the success probability of the baseline
attack is independent of the target, so this matches the usual view. DSPR is
different, because the success probability of the baseline attack depends on the
target.

One can object that this allows the baseline attack to be affected (positively
or negatively) by A’s competence in target selection. We give two responses to
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this objection. First, our definition enables a proof (Theorem 33) that T -DSPR
is at most T times easier to break than DSPR. Second, our definition enables
an interactive multi-target generalization (Theorem 38) of our proof that DSPR
and SPR together imply PRE.

Definition 31 (T -DSPR). Let T be a positive integer. Let A be an algorithm
with output in {1, . . . , T} × {0, 1}. The advantage of A against the T -target
decisional second-preimage resistance of a keyed hash function H is

AdvT -dspr
H (A) def

= max{0, q − p}

where

q = Pr
[
(x1, k1, . . . , xT , kT )←R (X ×K)T ;
(j, b)← A(x1, k1, . . . , xT , kT ) : Pkj (xj) = b

]
;

p = Pr
[
(x1, k1, . . . , xT , kT )←R (X ×K)T ;
(j, b)← A(x1, k1, . . . , xT , kT ) : Pkj (xj) = 1

]
;

and Pkj = SPexists(Hkj ).

The only difference between the formulas for q and p is that q compares
Pkj (xj) to b while p compares it to 1. If T > 1 then an algorithm might be able
to influence p up or down, compared to any particular SPprob(Hki), through the
choice of j. Obtaining a significant T -DSPR advantage then means obtaining q
significantly larger than p, i.e., making a prediction of Pkj (xj) significantly better
than always predicting that it is 1.

As an extreme case, consider the following slow algorithm. Compute each
Pkj (xj) by brute force; choose j where Pkj (xj) = 0 if such a j exists, else j = 1;
and output Pkj (xj). This algorithm has q = 1 and thus T -DSPR advantage
1−p. The probability p for this algorithm is the probability that all of x1, . . . , xT
have second preimages. For most length-preserving functions, this probability is
approximately (1 − 1/e)T , which rapidly converges to 0 as T increases, so the
T -DSPR advantage rapidly converges to 1.

Definition 32. Let A be an algorithm, and let T be a positive integer. Then
PlantT (A) is the following algorithm:

– Input (x, k) ∈ X ×K.
– Generate i←R {1, . . . , T}.
– Generate (x1, k1, . . . , xT , kT )←R (X ×K)T .
– Overwrite (xi, ki)← (x, k).
– Compute (j, b)← A(x1, k1, . . . , xT , kT ).
– Output b if j = i, or 1 if j 6= i.

This uses the standard technique of planting a single-target challenge at a
random position in a multi-target challenge. With probability 1/T , the multi-
target attack chooses the challenge position; in the other cases, this reduction
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outputs 1. The point of Theorem 33 is that this reduction interacts nicely with
the subtraction of probabilities in the DSPR and T -DSPR definitions.

The cost of PlantT (A) is the cost of generating a random number i between
1 and T , generating T − 1 elements of X ×K, running A, and comparing j to i.
The algorithm has essentially the same cost as A if X and K can be efficiently
sampled.

Theorem 33 (T -loose implication DSPR ⇒ T -DSPR). Let H be a keyed
hash function. Let T be a positive integer. Let A be an algorithm with output in
{1, . . . , T} × {0, 1}. Then

AdvT -dspr
H (A) = T ·Advdspr

H (B)

where B = PlantT (A).

Proof. By definition AdvT -dspr
H (A) runs A with T independent uniform random

targets (x1, k1, . . . , xT , kT ). Write (j, b) for the output of A(x1, k1, . . . , xT , kT ).
Then AdvT -dspr

H (A) = max{0, q−p}, where q is the probability that Pkj (xj) = b,
and p is the probability that Pkj (xj) = 1.

To analyze q and p, we split the universe of possible events into four mutually
exclusive events:

E00
def
= [b = 0 ∧ Pkj (xj) = 0];

E01
def
= [b = 0 ∧ Pkj (xj) = 1];

E10
def
= [b = 1 ∧ Pkj (xj) = 0];

E11
def
= [b = 1 ∧ Pkj (xj) = 1].

Then q = PrE00 +PrE11 and p = PrE01 +PrE11, so q − p = PrE00 − PrE01.
For comparison, Advdspr

H (B) runs B, which in turn runsA with T independent
uniform random targets (x1, k1, . . . , xT , kT ). One of these targets (xi, ki) is the
uniform random target (x, k) provided to B as a challenge; B randomly selects i
and the remaining targets. The output b′ of B(x, k) is b if j = i, and 1 if j 6= i.

The choice of i is not visible to A, so the event that i = j has probability
1/T . Furthermore, this event is independent of E00, E01, E10, E11: i.e., i = j has
conditional probability 1/T given E00, conditional probability 1/T given E01,
etc.

Write q′ for the chance that Pk(x) = b′, and p′ for the chance that Pk(x) = 1.
Then Advdspr

H (B) = max{0, q′−p′}. To analyze q′ and p′, we split into mutually
exclusive events as follows:

– E00 occurs and i = j. This has probability (PrE00)/T . Then (xj , kj) =
(xi, ki) = (x, k) so Pk(x) = Pkj (xj) = 0 = b = b′. This contributes to q′ and
not to p′.

– E01 occurs and i = j. This has probability (PrE01)/T . Then (xj , kj) = (x, k)
so Pk(x) = 1, while b′ = b = 0. This contributes to p′ and not to q′.

– All other cases: b′ = 1 (since b′ = 0 can happen only if b = 0 and i = j). We
further split this into two cases:
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• Pk(x) = 1. This contributes to q′ and to p′.
• Pk(x) = 0. This contributes to neither q′ nor p′.

To summarize, q′ − p′ = (PrE00)/T − (PrE01)/T = (q − p)/T . Hence

max{0, q − p} = max{0, T (q′ − p′)} = T max{0, q′ − p′};

i.e., AdvT -dspr
H (A) = T ·Advdspr

H (B).

7 Removing interactivity

The real importance of DSPR for security proofs is that it allows interactive
versions of preimage resistance to be replaced by non-interactive assumptions
without penalty. Interactive versions of preimage resistance naturally arise in,
e.g., the context of hash-based signatures; see Section 8.

The example discussed in this section is the T -openPRE notion already infor-
mally introduced in Section 1.2. We first review T -SPR, a multi-target version
of second-preimage resistance. Then we formally define the interactive notion
T -openPRE and show that its security tightly relates to T -SPR and T -DSPR.

T -SPR is what is called multi-function, multi-target second-preimage resis-
tance in [9]. It was shown in [9] that a generic attack against T -SPR has the
same complexity as a generic attack against SPR.

Definition 34 (T -SPR). The success probability of an algorithm A against the
T -target second-preimage resistance of a keyed hash function H is

SuccT -spr
H (A) def

= Pr
[
(x1, k1, . . . , xT , kT )←R (X ×K)T ;
(j, x)← A(x1, k1, . . . , xT , kT ) :
Hkj (x) = Hkj (xj) ∧ x 6= xj

]
.

T -openPRE is essentially what would be T -PRE (which we did not define)
but with the additional tweak that the adversary gets access to an opening
oracle. The adversary is allowed to query the oracle for the preimages of all but
one of the targets and has to output a preimage for the remaining one.

Definition 35 (T -openPRE). Let H be a keyed hash function. The success
probability of an algorithm A against the T -target opening-preimage resistance
of H is defined as

SuccT -openpre
H (A) def

= Pr
[
(x1, k1, . . . , xT , kT )←R (X ×K)T ;
(j, x′)← AOpen(Hk1(x1), k1, . . . ,HkT (xT ), kT ) :

Hkj (x
′) = Hkj (xj) ∧ j was no query of A

]
where Open(i) = xi.
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Now, it is of course possible to reduce PRE to T -openPRE. However, such
a reduction has to guess the index j for which A will output a preimage (and
hence does not make a query) correctly. Otherwise, if the reduction embeds its
challenge image in any of the other positions, it cannot answer A’s query for
that index. As A does not lose anything by querying all indices but j, we can
assume that it actually does so. Hence, such a reduction from PRE must incur
a loss in tightness of a factor T . For some applications discussed below, T can
reach the order of 4

√
N . This implies a quarter loss in the security level.

Theorem 38 shows that T -openPRE is tightly related to the non-interactive
assumptions T -DSPR and T -SPR: if H is T -target decisional-second-preimage
resistant and T -target second-preimage resistant then it is T -target opening-
preimage-resistant. As before, we first define the reductions and then state a
theorem regarding probabilities.

Definition 36 (T -target SPfromP). Let H be a keyed hash function. Let A be
an algorithm using an oracle. Let T be a positive integer. Then SPfromPT (H,A)
is the following algorithm:

– Input (x1, k1, . . . , xT , kT ) ∈ (X ×K)T .
– Output AOpen(Hk1(x1), k1, . . . ,HkT (xT ), kT ), where Open(i) = xi.

This generalizes the standard SPfromP reduction: it handles multiple targets
in the obvious way, and it easily answers oracle queries with no failures since
it knows all the xi inputs. The algorithm SPfromPT (H,A) uses T calls to H
(which can be deferred until their outputs are used) and one call to A.

Definition 37 (T -target DSPfromP). Let H be a keyed hash function. Let
A be an algorithm. Then SPfromPT (H,A) is the following algorithm:

– Input (x1, k1, . . . , xT , kT ) ∈ (X ×K)T .
– Compute (j, x′) ← AOpen(Hk1(x1), k1, . . . ,HkT (xT ), kT ), where Open(i) =
xi.

– Compute b← ((x′ 6= xj) ∨ j was a query of A).
– Output (j, b).

This is an analogous adaptation of our DSPfromP reduction to the interactive
multi-target context. Again oracle queries are trivial to answer. Note that the
case that A cheats, returning an index j that it used for an Open query, is a
failure case for A by definition; the algorithm SPfromPT (H,A) outputs 1 in this
case, exactly as if A had failed to find a preimage. In other words, this algorithm
returns 0 whenever A returns a solution that contains the preimage that was
already known by the reduction (but not given to A via Open), and 1 otherwise.

Theorem 38 (T -DSPR ∧ T -SPR ⇒ T -openPRE). Let H be a keyed hash
function. Let T be a positive integer. Let A be an algorithm. Then

SuccT -openpre
H (A) ≤ AdvT -dspr

H (B) + 3 · SuccT -spr
H (C)

where B = DSPfromPT (H,A) and C = SPfromPT (H,A).
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The core proof idea is the following. As noted above, the reductions attacking
T -SPR and T -DSPR can perfectly answer all of A’s oracle queries as they know
preimages. However, for the index for which A outputs a preimage (without
cheating), it did not learn the preimage known to the reduction. Hence, from
there on we can apply a similar argument as in the proof of Theorem 25. We
include a complete proof below to aid in verification.

Proof. Write (j, x′) for the output of AOpen(Hk1(x1), k1, . . . ,HkT (xT ), kT ). As in
the proof of Theorem 25, we split the universe of possible events into mutually
exclusive events across two dimensions: the number of preimages of Hkj (xj), and
whether A succeeds or fails in finding a preimage. Specifically, define

Si
def
=
[∣∣∣H−1kj (Hkj (xj))

∣∣∣ = i ∧Hkj (x
′) = Hkj (xj) ∧ j was no query of A

]
,

as the event that there are exactly i preimages and that A succeeds, and define

Fi
def
=
[∣∣∣H−1kj (Hkj (xj))

∣∣∣ = i ∧
(
Hkj (x

′) 6= Hkj (xj) ∨ j was a query of A
)]

as the event that there are exactly i preimages and that A fails. Note that there
are only finitely many i for which the events Si and Fi can occur.

Define si and fi as the probabilities of Si and Fi respectively. The probability
space here includes the random choices of (x1, k1, . . . , xT , kT ), and any random
choices made inside A.
T -openPRE success probability. By definition, SuccT -openpre

H (A) is the prob-
ability that x′ is a non-cheating preimage of Hkj (xj); i.e., that Hkj (x

′) = Hkj (xj)
and j was not a query to the oracle. This event is the union of the events Si, so
SuccT -openpre

H (A) =
∑
i si.

T -DSPR success probability. By definition B outputs the pair (j, b), where
b = ((x′ 6= xj) ∨ j was a query of A).

Define Pkj = SPexists(Hkj ), and define q as in the definition of AdvT -dspr
H (B).

Then q is the probability that B is correct, i.e., that b = Pkj (xj). There are four
cases:

– If the event S1 occurs, then there is exactly 1 preimage of Hkj (xj), so
Pkj (xj) = 0 by definition of SPexists. Also, A succeeds: i.e., j was not a
query, and x′ is a preimage of Hkj (xj), forcing x′ = xj . Hence b = 0 =
Pkj (xj).

– If the event F1 occurs, then again Pkj (xj) = 0, but now A fails: i.e., j was
a query, or x′ is not a preimage of Hkj (xj). Either way b = 1 6= Pkj (xj).
(We could skip this case in the proof, since we need only a lower bound on
q rather than an exact formula for q.)

– If the event Si occurs for i > 1, then Pkj (xj) = 1 and A succeeds. Hence j
was not a query, and x′ is a preimage of Hkj (xj), so x′ = xj with conditional
probability exactly 1

i . Hence b = 1 = Pkj (xj) with conditional probability
exactly i−1

i .
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– If the event Fi occurs for i > 1, then Pkj (xj) = 1 and A fails. Failure means
that x′ is not a preimage, so in particular x′ 6= xj , or that j was a query.
Either way b = 1 = Pkj (xj).

To summarize, q = s1 +
∑
i>1

i−1
i si +

∑
i>1 fi.

T -DSPR advantage. Define p as in the definition of AdvT -dspr
H (B). Then

AdvT -dspr
H (B) = max{0, q − p}.
The analysis of p is the same as the analysis of q above, except that we

compare Pkj (xj) to 1 instead of comparing it to b. We have 1 = Pkj (xj) exactly
for the events Si and Fi with i > 1. Hence p =

∑
i>1 si +

∑
i>1 fi. Subtract to

see that

AdvT -dspr
H (B) = max{0, q − p} ≥ q − p = s1 −

∑
i>1

1

i
si.

T -SPR success probability. By definition C outputs (j, x′). The T -SPR suc-
cess probability SuccT -spr

H (C) is the probability that x′ is a second preimage of
xj under Hkj , i.e., that Hkj (x

′) = Hkj (xj) while x′ 6= xj .
It is possible for C to succeed while A fails: perhaps A learns xj = Open(j)

and then computes a second preimage for xj , which does not qualify as an T -
openPRE success for A but does qualify as a T -SPR success for C. We ignore
these cases, so we obtain only a lower bound on SuccT -spr

H (C); this is adequate
for the proof.

Assume that event Si occurs with i > 1. Then x′ is a preimage of Hkj (xj).
Furthermore, A did not query j, so xj is not known to A except via Hkj (xj).
There are i preimages, so x′ = xj with conditional probability exactly 1

i . Hence
C succeeds with conditional probability i−1

i .
To summarize, SuccT -spr

H (C) ≥
∑
i>1

i−1
i si.

Combining the probabilities. We conclude as in the proof of Theorem 25:

AdvT -dspr
H (B) + 3 · SuccT -spr

H (C) ≥ s1 −
∑
i>1

1

i
si + 3

∑
i>1

i− 1

i
si

= s1 +
∑
i>1

3i− 4

i
si

≥ s1 +
∑
i>1

si = SuccT -openpre
H (A) .

8 Applications to hash-based signatures

The interactive notion of T -openPRE with a huge number of targets naturally
arises in the context of hash-based signatures. This was already observed and
extensively discussed in [9]. One conclusion of the discussion there is to use keyed
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hash functions with new (pseudo)random keys for each hash-function call made
in a hash-based signature scheme.

When applying this idea to Lamport one-time signatures (L-OTS) [11], the
standard security notion for OTS of existential unforgeability under one chosen
message attacks (EU-CMA) becomes T -openPRE where A is allowed to make
T/2 queries. Using L-OTS in a many-time signature scheme such as the Merkle
Signature Scheme [13] and variants like [12,2,8] can easily amplify the difference
in tightness between a reduction that uses (T -)PRE and a reduction from T -SPR
and T -DSPR to 270.

Indeed, the general idea of using T -SPR instead of (T -)PRE in security reduc-
tions for hash-based signatures already occurs in [9]. However, there the authors
make use of the assumption that for the used hash function every input has a
colliding value for all keys, i.e., SPprob(H) = 1 in our notation. This is unlikely
to hold for common length-preserving keyed hash functions as Section 3 shows
SPprob(H) ≈ 1 − 1/e for random H. However, as shown above, it is also not
necessary to require SPprob(H) = 1. Instead, it suffices to require (T -)DSPR.

For modern hash-based signatures like XMSS [7] L-OTS is replaced by vari-
ants [6] of the Winternitz OTS (W-OTS) [13]. For W-OTS the notion of EU-
CMA security does not directly translate to T -openPRE. Indeed, the security
reduction gets far more involved as W-OTS uses hash chains. However, as shown
in [9] one can replace (T -)PRE in this context by T -SPR and the assumption
that SPprob(H) = 1. Along the lines of the above approach we can then replace
the assumption that SPprob(H) = 1 by T -DSPR.
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A Some single-variable functions

This appendix proves features of some functions used in the proofs of theorems
in Section 3. The proofs in this appendix are split into small lemmas to support
verification. The notation R>0 means the set of positive real numbers.

Lemma 39. If x 6= 0 then ex > 1 + x.

Proof. The derivative of ex − 1 − x is ex − 1, which is negative for x < 0 and
positive for x > 0. Hence ex − 1 − x achieves its minimum value uniquely at
x = 0. This value is e0 − 1 = 0.
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Lemma 40. Any x ∈ R has ex − 2x ≥ 2− 2 log 2 > 0.

Proof. The derivative of ex − 2x is ex − 2, which is negative for x < log 2 and
positive for x > log 2. Hence ex−2x has its minimum value at x = log 2, namely
2− 2 log 2. This value is positive since log 2 < log e = 1.

Lemma 41. If x > 0 then ex − 1 + x− x2 > 0.

Proof. The derivative of ex − 1 + x− x2 is ex + 1− 2x, and ex + 1− 2x > 1 by
Lemma 40. Hence the minimum value of ex − 1 + x − x2 for x ≥ 0 is achieved
uniquely at x = 0. The value at x = 0 is e0 − 1 = 0.

Lemma 42. Define ϕ1(x) = x(ex − 1)/(ex − x). Then ϕ1 is increasing, and
maps R>0 bijectively to R>0.

Proof. ϕ′1(x) = (ex−1+x−x2)ex/(ex−x)2. The first factor is positive for x > 0
by Lemma 41, the second factor is positive, and the denominator is positive, so
ϕ′1(x) > 0 for x > 0. By the mean-value theorem, ϕ1 is injective on R>0.
Furthermore, ϕ1(0) = 0; and limx→∞(ex − 1)/(ex − x) = 1, so limx→∞ ϕ1(x) =
∞. By the intermediate-value theorem, ϕ1 maps onto R>0.

Lemma 43. If x 6= 0 then ex + e−x > 2.

Proof. By Lemma 39, ex > 1 + x and e−x > 1− x. Add.

Lemma 44. If x > 0 then ex − e−x − 2x > 0.

Proof. The derivative of ex−e−x−2x is ex+e−x−2, which is positive for x > 0
by Lemma 43. Hence the minimum value of ex − e−x − 2x for x ≥ 0 is achieved
uniquely at x = 0. This value is e0 − e0 = 0.

Lemma 45. If x > 0 then ex + e−x − 2− x2 > 0.

Proof. The derivative of ex+ e−x− 2−x2 is ex− e−x− 2x, which is positive for
x > 0 by Lemma 44. Hence the minimum value of ex + e−x − 2 − x2 for x ≥ 0
is achieved uniquely at x = 0. This value is e0 + e0 − 2 = 0.

Lemma 46. Define ϕ2(x) = x(ex − 1)/(ex − 1 − x) for x > 0. Then ϕ2 is
increasing, and maps R>0 bijectively to R>2.

Proof. ϕ′2(x) = (ex + e−x − 2− x2)ex/(ex − 1− x)2. The first factor is positive
for x > 0 by Lemma 45, the second factor is positive, and the denominator
is positive, so ϕ′2(x) > 0 for x > 0. By the mean-value theorem, ϕ2 is injec-
tive on R>0. Furthermore, limx→0+ ϕ2(x) = 2 and limx→∞ ϕ2(x) = ∞. By the
intermediate-value theorem, ϕ1 maps R>0 onto R>2.

Lemma 47. The ratio (e − 1)1−x/xx(1 − x)1−x for 0 < x < 1 increases for
0 < x < 1/e, has maximum value e at x = 1/e, and decreases for 1/e < x < 1.
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Proof. The logarithm (1−x) log(e−1)−x log x−(1−x) log(1−x) has derivative
− log(e − 1) − log x + log(1 − x). This derivative is zero exactly when e − 1 =
(1−x)/x, i.e., when x = 1/e; positive when x < 1/e; and negative when x > 1/e.
The logarithm thus achieves its maximum value at x = 1/e, namely(

1− 1

e

)
log(e− 1)− 1

e
log

1

e
−
(
1− 1

e

)
log

(
1− 1

e

)
=

(
1− 1

e

)
log(e− 1) +

1

e
+

(
1− 1

e

)
−
(
1− 1

e

)
log (e− 1) = 1.

Lemma 48. The maximum value of 1/(2x− 1)2x−1(1− x)2(1−x)21−x for 1/2 <
x < 1 is 1 +

√
2.

Proof. The logarithm −(2x− 1) log(2x− 1)− 2(1− x) log(1− x)− (1− x) log 2
has derivative log 2+2 log(1−x)− 2 log(2x− 1). The derivative is thus positive,
0, or negative depending on whether

√
2(1− x)/(2x− 1) is larger than 1, equal

to 1, or smaller than 1; i.e., whether x is smaller than 1/
√
2, equal to 1/

√
2, or

larger than 1/
√
2. The logarithm therefore has maximum value at x = 1/

√
2,

namely

− (
√
2− 1) log(

√
2− 1)− 2

(
1− 1√

2

)
log

(
1− 1√

2

)
−
(
1− 1√

2

)
log 2

= −(
√
2− 1) log(

√
2− 1)− 2

(
1− 1√

2

)
log(
√
2− 1)

= − log(
√
2− 1) = log(1 +

√
2).

Lemma 49. Define ϕ5(x) = xex − ex + 1. Then ϕ5 decreases for x < 0, has
minimum value 0 at x = 0, and increases for x > 0.

Proof. ϕ′5(x) = xex, which is negative for x < 0 and positive for x > 0. Hence
ϕ5(x) has minimum value at 0, namely 0− e0 + 1 = 0.

Lemma 50. Let x be a positive real number. Define y = ex − 1 − x and z =
1/(x+ x2/y); then 0 < z < 1/2. Define γ = yz/xzz(1− z)1−z; then γ ≤ e− 1.

Proof. Define ϕ2(x) = x(ex − 1)/(ex − 1− x). Then

1

z
= x+

x2

y
= x+

x2

ex − 1− x
= ϕ2(x) > 2

by Lemma 46, so 0 < z < 1/2.
Note that y(1 − z)/z = y(1/z − 1) = y(x + x2/y − 1) = xy + x2 − y =

xex − ex + 1. Also, the derivative y′ of y with respect to x is ex − 1 = y + x, so
xy′/y = x+ x2/y = 1/z; i.e., zy′/y = 1/x.
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Next log γ = z log y − log x − z log z − (1 − z) log(1 − z), so γ′/γ = zy′/y +
z′ log y− 1/x− z′ log z+ z′ log(1− z) = z′ log(y(1− z)/z) = z′ log(xex− ex+1).

By Lemma 46, ϕ2(x) increases with x, so z = 1/ϕ2(x) decreases with x, so
z′ < 0.

By Lemma 49, xex − ex + 1 increases with x for x > 0. Its value at x = 1 is
1. Hence log(xex − ex + 1) is negative for x < 1 and positive for x > 1.

To summarize, γ′ is positive for x < 1 and negative for x > 1. Hence γ has
its maximum value at x = 1.

We conclude by assuming x = 1 and showing γ = e− 1. First y = e− 2 and
z = 1/(1 + 1/(e − 2)) = (e − 2)/(e − 1), so y/z = e − 1 and 1 − z = 1/(e − 1).
The (e − 1)th powers of yz, zz, (1 − z)1−z are ye−2, ze−2, 1 − z respectively, so
the (e− 1)th power of yz/zz(1− z)1−z is ye−2/ze−2(1− z) = (e− 1)e−1. Hence
γ = yz/xzz(1− z)1−z = e− 1 as claimed.
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